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Example 2) f(z) = 2, g(w) \/7 (for some branch choice). Note for any branch
choice of g,
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Describe the range of the branch of the square root function defined below. Write down
two other branch choices - one using the same branch cut, and another one using a

different cut. @ @
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Example 3) Find a definition and branched domain for v

flz)=yZ—1.= (3" 0t O ERA SO L

(In your homework for next week you will do an analogous procedure for 21

=/2 —1 .) Begin by identifying branch points based on where f or f’ cannot be
not defined as an analytic function. 4 ot i fontd, @ 2z 4
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Then branch domaing shadd Xoowcle/(
a) Writing f(z =7 =Jz— 14z -|— 1 leads to one p0551ble way of procedlng
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b) Considering f as a composition, f(z) =g o h(z) with h(z) =2> — 1 and
g(w) =+ w recovers the first branched domain, but also leads to a choice with only a
finite branch cut, as well as the original one.
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Math 4200
Friday September 18

¢ 1.6 branched domains (fundamental domains) to create single-valued analytic functions
from multi-valued ones. (From Wednesday's notes).
¢ 2.1 begin Chapter 2 on definite and indefinite complex intezgration

Chapter 2: Complex integration.
- Leads to Cauchy Integral Formula and magic theorems which result:
- Liouville's Theorem: Bounded entire functions are constant.
- Fundamental Theorem of Algebra: every degree n polynomial has n
(complex) roots, counting multiplicity.
- Magic ways to compute many definite integrals (contour integration).

Announcements: i) duel o F),,\-,,{gy,) @ [1:54 P f{;m WS o~
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2.1 Integration of complex-valued functions of a real variable ¢, just as in Calc 1.
Introduction to contour integrals - analogous to /ine integrals from multivariable
Calculus.

Al Def: For f:[a, b] = R— C continuous, f(¢) =u(t) + iv(t), with
u=Re(f), v=Im(f)

b b b b
¢ Jf(t) dt=J u(t) +iv(t) de ==J u(t) de + i[ v(t) dt.
a a a a
It is useful for estimates to note that since_u, v are continuous on [a, b] they are
uniformly continuous - and you proved in Math 3210 that in this case definite integrals
are limits of Riemann sums for partionings P of [a, b], as the "norm" of the partition
approaches zero: For
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so also
A2 Def
b
Jf(t) dt = IIPhIIIn—>0 ;u(tj )AL + i ||Ph|I|n—>0 JZV(IJ )At] = ||Phﬁn—>0 ;f(tj )Atj
a
Example 1: Use Calc 1 FTC to compute
T
2
J — 2 sin(t)cos(t) + i(cos(¢) — sin?(z)) dt.
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Math 4200-001
Week 4-5 concepts and homework
1.6,2.1-2.2
Due Friday September 25 at 11:59 p.m.

1.6 10, 14

2.1 2ac, 3, 5,10, 11, 13, 14;

2.2 1lad, 2 (prove with FTC!), 3 (work in reverse to rewrite as a contour integral that
you can evaluate), 4, 6, 8, 9, 10 (use the antiderivative theorem and slightly modify
Example 1.6.8).

Hint: In many of these problems the fundamental theorem of Calculus for contour
integrals lets you find the answer very quickly once you find an antiderivative on an
appropriate domain.

w4.1 (extra credit) This is a careful version of 1.6.6. Part (a) is relatively
straightforward. I consider part (b) to be challenging.

a) Solve sin(z) =w for z using the quadratic formula and logarithms. Keep careful
track of the multi-valued nature of the inverse sine function arcsin(z). Note that the
quadratic formula yields two solutions except when cos(z) = 0.

b) Prove that there is a branch of arcsin(z) defined on the branch domain we used in

class for / -1 ,namely C \ {x € R s.t. |x] > 1} , which is a bijection to the

vertical strip {x +iy ‘ - % <x< % } This branch extends the Calculus arcsin(x)

) X X X X ) i T
which was defined as a differentiable function on the interval - 5 <x< E )



